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Abstract

Some typical performance issues associated with sparse matrix codes which use
the Message Passing Interface and distributed memory machines will be discussed.
In particular, average, sustained, oating point performance will be examined as a
function of problem size and number of processors for an unstructured uid mechanics
solver. These issues will be examined within the context of the iterative solution
of nonsymmetric, linear systems of equations, such as those that arise from �nite
volume approximations to convection-di�usion problems. A brief description of the
parallel CGSTAB (stabilized bi-conjugate gradient) iterative method will be followed
by comparisons of its performance on the IBM SP, SGI Origin 2000, and Cray T3E at
the Corps of Engineers Waterways Experiment Station Major Shared Resource Center
(CEWES MSRC). In general, these machines have chips that are rated at several
hundred Mops, but actual performance obtained in practice is much less. Sustained
performance is a strong function of cache and communication performance. The aim of
this report is not to determine which machine is \better" for certain classes of problems,
but rather to illustrate performance trade-o�s that users can expect to address in most
problems run on these machines.

1 Introduction

As part of the Department of Defense High Performance Computing Modernization Pro-
gram, there has been a substantial increase in the computational resources available at the
U.S. Army Corps of Engineers Waterways Experiment Station Major Shared Resource Cen-
ter (CEWES MSRC). In particular, as part of the Performance Level 2 upgrade, an IBM
SP, an SGI Origin 2000, and a Cray T3E have been installed (1). These machines represent
quite a departure from the pre-existing Cray Y/MP and C90 vector processors. The most
obvious di�erence in these new machines is in the use of commodity, superscalar RISC chips
to produce highly parallel, distributed memory architectures. In general, these machines
have chips that are rated at several hundred Mops each, but actual performance obtained
in practice is much less. Achievable sustained performance is a strong function of how e�ec-
tively a given program can use the cache and the expense of interprocessor communication.
The CEWES MSRC webpage (http://apollo.wes.hpc.mil/hardware/systems.html) gives the
hardware data for the three machines listed in Table 1. The Mops per processor were
obtained simply by dividing the total Gops in the table by the total number of processors.

This report describes some numerical experiments that were performed on the machines
listed in Table 1. In the remaining sections, a model problem is described, followed by a brief
description of the parallel methodology. Then parallel performance results are presented and
discussed.
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Machine Number & Type of PE's Total Memory Total Gops Rp

O2000 (32) 200 MHz MIPS R10000 16 GB 11.5 360
T3E (312) 450 MHz DEC Alpha 80 GB 281 900
SP (256) 135 MHz IBM RS/6000 256 GB 138 540

Table 1: Speci�cations of CEWES MSRC Architectures. Performance rates are vendor-
advertised peak performance. Rp is the performance rate in Mops per processor.

2 The Model Problem

Selection of a model or benchmark problem is somewhat problematic, because there are two
basic requirements which are in conict: the problem should be representative of large-scale
computational mechanics codes, and yet should also be small enough to run many times
on several di�erent problem sizes and machines in a reasonable amount of time. For this
study, the model problem is a two-dimensional, nonlinear, steady-state, scalar, convection-
di�usion-reaction problem of the form

r � F (c) �r � [K(c)rc]�R(c) = 0; (1)

where c is the unknown concentration, F (c) is the nonlinear convective ux, K(c) is the
di�usivity, and R(c) is the reaction term. The details of the parallel �nite volume algorithm
used to approximate this equation may be found in [1]. Equation (1) is linearized and
discretized via an upwind �nite volume method using unstructured triangulations. This
approach leads to a sequence of linear systems of equations of the form

Ax = b; (2)

where x represents the unknown concentrations, b is the forcing function which arises due
to the reaction and boundary condition terms, and A is a sparse, square, nonsymmetric
coe�cent matrix. It should be noted that the solution of systems of this form is a funda-
mental problem in computational mechanics. There are two main distinct ways to solve such
systems, which can be broadly classi�ed as either direct or iterative. Direct methods are
based on Gaussian elimination. They are in general more robust but harder to implement
and scale on distributed memory architectures. On the other hand, iterative methods are
easier to parallelize, but are not as robust, particularly for nonsymmetric matrices.

3 Parallel Methodology

3.1 Communication Requirements

With �nite element or �nite volume methods, the parallelization of the matrix construction
process is trivial. Parallel solution of the matrix system (2), however, is not. In this
report, the CGSTAB iterative method is used [2]. This Krylov method also requires an
e�ective preconditioner for e�ciency. In this study, simple diagonal preconditioning is used
exclusively and it should be noted that this may not be very e�ective for certain problems in
this class. However, more complex preconditioners are harder to parallelize. The details of
the CGSTAB algorithmare availible in the literature and will not be repeated here. However,
it is important to note that each iteration requires four dot products and 2 matrix-vector
products. To parallelize a Krylov method using diagonal preconditioning, there are two
essential steps which require communication: the matrix vector product requires point-to-
point communication for exchange of data on the processor interfaces, and the dot products
require global reduction operations.
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In traditional �nite element and �nite volume schemes (e.g. see [3]), the construction of
the global matrix A is performed by looping over the individual cells and calculating local
element or edge contributions Ae, which are then accumulated, or summed, to obtain the
global coe�cient matrix A,

A =
EX

e=1

Ae: (3)

The element contributions Ae are dense, but small. For example, if (1) is discretized using
linear triangles, Ae is a dense 3� 3 matrix for each element. Typically, some sparse storage
scheme is used to store the assembled matrixA, and the matrix vector product y = Ax can
be computed using a corresponding indirect addressing scheme. An alternative, \element-
by-element" approach for computing the matrix-vector product is to store only the element
matricesAe and never assemble the global matrix. Instead, the e�ect of the assembly process
is achieved by summing the local element contributions to the matrix-vector products, viz.

y =
EX

e=1

Aex (4)

This approach leads to a very natural sparse storage scheme which is easily done in paral-
lel [4].

The basic parallel strategy is implemented in the present performance study to �rst parti-
tion the triangles in the grid using the METIS package (http://www.cs.umn.edu/�karypis/metis/metis.html).
Note that this implies that grid points are shared. Next, form and store the local element
matrices Ae and the vector b. Then the essence of the parallel Krylov method involves the
computation of the matrix vector products in parallel, and the exchange of the interface
values using message-passing sends and receives. The MPI library was used to make mea-
surements for this report. Speci�cally, the non-blocking routines MPI Isend() & MPI Irecv()
were used for the point-to-point communication. Each processor's contribution to the dot
product is calculated in parallel and then combined via a call to MPI Allreduce() to accom-
plish the reduction operation.

3.2 Message Passing Bandwidth

To gain insight into the message-passing performance of the above algorithm, the MPI
bandwidth of each of the three machines in Table 1 was determined experimentally. This was
done by sending a message of a given size one-way between two processors. This experiment
was repeated one hundred times for each message length and the results averaged to obtain
the results shown in Figure 1. First notice that there are two curves shown for the IBM
SP. On this machine, there are two message passing subsystems available to the user: the
internet protocol (IP) and the user space (US). If the US is used on a processor, then no
other process may access the high-speed switch. However, the performance advantages of
the US are substantial. It is interesting to note that the T3E and the Origin 2000 have
approximately the same bandwidth. The US subsystem on the SP consistently gives about
half the bandwidth of the other two machines. The IP subsystem consistently gives about
an order of magnitude less bandwidth than the US.

It is also instructive to consider the transit time of a message. To this end, the bandwidth
data were reduced to obtain the plot shown in Figure 2. Note that the transit times are
dominated by latency until the message length is about 1 kbyte. The approximate values of
the experimentally obtained MPI latencies on each of the three machines are taken from the
�gure and given in Table 2. (Here, latency is obtained by simply taking the minimumtranist
time.) For Krylov algorithms such as CGSTAB, the latencies are particularly important
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Figure 1: One-way MPI bandwidth as a function of message length.
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Figure 2: One-way MPI message transit time as a function of message length.
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Machine Latency (�s)
SP (IP) 300
SP (US) 30
T3E 16
O2000 16

Table 2: Approximate measured MPI latencies.

because of the inner product calculation: the latency suggests a lower bound on the time
required to perform a global reduction operation to a single 64-bit number. This type
of global (as opposed to point-to-point) communication cannot be overlapped under the
current MPI standard.

In order to estimate typical message lengths encountered by a �nite volume code when
exchanging data on processor interfaces, consider the following. In two dimensions, assume
that there are 105 grid points distributed among 100 processors. This leads to 103 grid
points per processor, which is approximately a square of 32 grid points per side. So each
exchange would involve lines of 32 grid points. If it is further assumed that there are �ve
degrees of freedom per grid point, and if each word is 64 bits, the message length would be
approximately 1kB. In three dimensions, assume that there are 106 grid points distributed
among the same 100 processors. This amounts to a cube of approximately 212 grid points
per side. Assuming six degrees of freedom per grid point, the message length to exchange
a single plane of data would be approximately 22 kbytes. These estimates indicate that
in three dimensions, the maximum bandwidth shown in Figures 1 and 2 can be readily
obtained, but probably not in two dimensions.

4 Numerical Experiments

In order to illustrate some basic performance issues, the model problem was run on the three
machines for a given set of boundary conditions using problem sizes of 7,800, 19,000, 43,000,
and 93,000 triangles. For example, Figure 3 shows the 7,800 element grid as partitioned by
METIS for computation on four processors.

The average sustained performance is examined as a function of problem size and the
number of processors. The e�ect of two simple optimizations is also considered. First, recall
that the �nite volume grid is unstructured. Hence a front width minimization ordering is
performed on the grid points in order to improve cache performance (e.g. see [5]). To see
why reordering should improve cache performance, consider that for unstructured grids,
the grid ordering is generally not such that consecutively labeled points and elements are
adjacent to one another in the grid. For example, if the elements are randomly ordered, then
it is not likely that consecutively labeled elements will update grid points that have already
been loaded into cache. A front width minimization numbering strategy consecutively labels
the elements which share grid points. Hence, as the elements are processed, all contributions
to a single grid point can probably be calculated while the corresponding array element is in
cache. Second, the triangles which support grid points on the processor interfaces are ordered
�rst in the list so that the communication to perform the exchange for the matrix vector
products can be overlapped with useful oating point calculations. This can be achieved by
breaking the loop for the matrix-vector product into two parts. The �rst part loops over the
�rst Ti interface triangles and computes their contributions as in (4). Next the nonblocking
sends and receives are initiated. Then the second part calculates the contributions from the
interior triangles labeled e = Ti to E. Finally, the communication operation is completed
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Figure 3: Example mesh of 7,800 elements as partitioned by METIS for four processors.
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Figure 4: Average sustained CGSTAB performance per T3E processor as a function of the
number of processors and parameterized by problem size.

via a call to MPI Wait() and the o�-processor contributions accumulated.
All timings were obtained with MPI Wtime(), so that they represent elapsed wall clock

time. These results are still reproducable, however, because on the SP (with the US protocol)
and the T3E a user exclusively owns a processor once it has been allocated. This is not the
case on the Origin 2000, which is like a traditional time-sharing Unix system. Great care
was taken in the studies described here to ensure that no other users were sharing processors
during the O2000 experiments. These are exclusive of I/O, but represent the average of a
single CGSTAB solve over the course of obtaining the nonlinear solution.

The op counts were obtained by hand; addition, subtraction, multiplication, and divi-
sion operations were each counted as a single op. In general, the Mop rate is not a good
metric for benchmark evaluations because of the possible ambiguity in its de�nition. The
focus of this report is to illustrate certain performance issues, not to establish a benchmark
standard to be run by many di�erent users on many di�erent machines over an extended
period of time. In this case, the Mop rate is an interesting metric (if counted consistently)
because it gives an estimate of the fraction of the peak oating point performance that can
be achieved in practice. Furthermore, since the op counts are consistent and the data sets
are the same across the machines, a Mop rate can be interpreted as inverse time.

First, consider the average, sustained per processor performance of the CGSTAB algo-
rithm. Figures 4-6 present the Mop rates as a function of the number of processors and
parameterized by problem size for each of the three machines. This data was obtained with
both the front width minimization ordering and the overlapped exchange.

First, note that the general trends on all three machines are the same. For example,
consider the e�ect of problem size on oating point performance. For two processors, there
is relatively little communication; the calculation is CPU bound. In this case, oating
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Figure 5: Average sustained CGSTAB performance per IBM SP processor as a function of
the number of processors and parameterized by problem size.
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Figure 6: Average sustained CGSTAB performance per processor as a function of the num-
ber of O2000 processors and parameterized by problem size.
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point performance decreases with increasing problem size. The explanation is that for small
problem sizes, the data �ts into cache and high performance is obtained. As the problem
size is increased, the data becomes too large to �t into cache and oating point performance
can decrease by as much as a factor of three. On the other hand, for sixteen processors there
is substantially more communication than in the two processor case. Here the observation
is reversed: oating point performance increases with increasing problem size. In this case,
for small problem sizes the calculation is communication bound because there simply isn't
enough work to o�set the cost of communication. Increasing the problem size provides more
work to o�set the communication overhead, thereby increasing oating point performance.
Also note that on each machine for the moderate to large problem sizes there is an optimum
number of processors at which the maximumoating point performance is obtained. Finally,
note that the highest per-processor performance of the T3E on the largest problem size is
approximately half that of the other two machines. However, the oating point performance
on 64 T3E processors exceeds that which is obtained on 64 SP processors.

Next, the e�ect of the element reordering and communication overlap is considered.
Figures 7-9 show the total oating point performance as a function of processor number
for the 93,000 element case for the T3E, the SP, and the O2000, respectively. For the
T3E, the optimizations are quite e�ective, especially the overlapped exchange. Note that
for the SP, essentially no bene�t is observed with these optimizations for smaller processor
numbers. On the O2000, the optimizations have very little e�ect. These results are also
somewhat counterintuitive; the non-overlapped slightly beats the overlapped case for small
numbers of processors. This can perhaps be explained by a software pipeline e�ect. The
overlapping requires that the loop for the matrix vector product be broken into two shorter
loops, thus incurring additional overhead and breaking up the pipelining e�ect associated
with the single, larger loop.

Finally, the best performing optimization for each of the three machines is shown in
Figure 10 for the 93,000 element case. Surprisingly, on two processors, the oating point
performance of this algorithm on the three machines is esssentially idential. As the number
of processors is increased, the oating point performance is consistently better on the O2000
and the SP than on the T3E. However, ultimately the performance on the T3E exceeds that
of the other two machines. For the O2000 this happens simply because the available system
was limited to 32 processors. The reasons are more interesting for the SP. On the T3E,
communication costs are about half that of the SP (see Table 2), while at the same time the
per processor performance of the CGSTAB algorithm is substantially slower than the SP.
Hence, the relative cost of communication to computation is much lower on the T3E and
the algorithm is more scalable.

5 Discussion

In general, the simple experiments described in this report show that the oating point
performance on microprocessor-based scalable computing systems depends strongly on the
problem size. The relative balance of cache and communication performance is particularly
important for single processor e�ciency and overall scalability. For the CGSTAB algorithm,
the dot products can become very expensive to calculate if the problem size is not scaled
with the number of processors. This is because for short messages, the message latency
dominates. To calculate a dot product, there is �rst a reduction operation that gathers
each processor's contribution to the sum to a single process. Then the result is broadcast
to all the other processors. Hence the cost of this calculation grows with the number of
processors. This is in contrast to the point-to-point exchange operation, which is local and
tends to vary very little for reasonably partitioned grids. The cost of the global reduction
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Figure 10: Comparison of performance for the 93,000 element case on the SP, T3E, and
O2000.

operation is aggravated on slow networks and would be particularly bad on e.g. a network
of workstations connect via ethernet.

In general, compared to the peak theoretical performance �gures in Table 1 the realized
performance of the algorithm all three machines is quite poor, ranging from at best about
30% to at worst about 1% of \peak". On average, the CGSTAB code is running at about
10% of single processor e�ciency on the T3E, 22% on the Origin 2000, and 15% on the
SP. These numbers are representative of the performance of sparse matrix codes that are
written in straightforward fortran on microprocessors. The importance of data locality
cannot be overstated. If extensive manual blocking for cache performance, loop unrolling,
and interleaving is performed, the e�ciency can probably be increased to around 40-50%.
But his leads to a compromise in code readability, portability and maintainability. If a
production code is of substantial maturity and importance, then it may be well worth the
optimization e�ort required.
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